Skip to main content

AI Agents Commands

Commands for managing AI agents, orchestrator, and workflow automation.

Agent Creation

create_agent

Create new agent definitions or load pre-built templates.

python manage.py create_agent NAME INSTRUCTIONS [OPTIONS]

Arguments:

  • NAME - Agent name (unique identifier)
  • INSTRUCTIONS - Agent instructions/system prompt

Options:

  • --deps-type TEXT - Dependencies type (default: DjangoDeps)
  • --output-type TEXT - Output type (default: ProcessResult)
  • --model TEXT - LLM model to use (default: openai:gpt-4o-mini)
  • --category TEXT - Agent category
  • --timeout INTEGER - Execution timeout in seconds (default: 300)
  • --max-retries INTEGER - Maximum retry attempts (default: 3)
  • --public - Make agent public (accessible to all users)
  • --no-cache - Disable caching for this agent
  • --creator TEXT - Username of agent creator
  • --description TEXT - Agent description
  • --tags TEXT [TEXT...] - Agent tags (space-separated)

Creating Custom Agents

Basic Content Analyzer

python manage.py create_agent "content_analyzer" \
"Analyze content for sentiment, topics, keywords, and quality metrics. \
Provide detailed analysis including readability scores and recommendations." \
--category content \
--description "Comprehensive content analysis agent"

Business Rules Agent

python manage.py create_agent "business_rules" \
"Apply business rules, validate decisions, and ensure compliance with policies. \
Check all input against defined business logic and return validation results." \
--category business \
--public \
--model openai:gpt-4o \
--timeout 600

Data Processor

python manage.py create_agent "data_processor" \
"Process, clean, and transform data according to specifications. \
Handle data validation, normalization, and enrichment tasks." \
--category data \
--tags processing etl automation \
--description "Handles data transformation workflows" \
--max-retries 5

Customer Support Agent

python manage.py create_agent "support_agent" \
"Respond to customer inquiries with helpful, accurate information. \
Use friendly tone, provide step-by-step guidance, and escalate when needed." \
--category support \
--public \
--model openai:gpt-4o \
--description "24/7 customer support automation"

Code Review Agent

python manage.py create_agent "code_reviewer" \
"Review code for quality, security, and best practices. \
Identify bugs, suggest improvements, and check coding standards." \
--category development \
--tags code-quality security review \
--model openai:gpt-4o \
--timeout 900

Template Management

List Available Templates

python manage.py create_agent --list

Output:

📋 Available Agent Templates:
========================================

CONTENT:
• content_analyzer: Analyze content sentiment, topics, and quality
• content_generator: Generate high-quality content based on requirements
• content_validator: Validate content quality and compliance

DATA:
• data_processor: Process and transform data
• data_validator: Validate data quality and integrity

BUSINESS:
• business_rules: Apply business rules and logic
• decision_maker: Make decisions based on criteria

Load Specific Templates

# Load single template
python manage.py create_agent --load content_analyzer

# Load multiple templates
python manage.py create_agent --load content_analyzer data_processor business_rules

Load All Templates

python manage.py create_agent --load-all

Available Templates:

Content Templates

  • content_analyzer - Analyze content sentiment, topics, and quality
  • content_generator - Generate high-quality content based on requirements
  • content_validator - Validate content quality and compliance

Data Templates

  • data_processor - Process and transform data
  • data_validator - Validate data quality and integrity

Business Templates

  • business_rules - Apply business rules and logic
  • decision_maker - Make decisions based on criteria

Orchestrator Management

orchestrator_status

Display Django Orchestrator status and statistics.

python manage.py orchestrator_status [OPTIONS]

Options:

  • --detailed - Show detailed statistics
  • --agents - Show agent-specific statistics
  • --recent INTEGER - Show statistics for recent hours (default: 24)

Status Commands

Basic Status

python manage.py orchestrator_status

Output:

🤖 Django Orchestrator Status
==================================================

📋 Registry Status:
Runtime Agents: 5
Available Patterns: 12
Loaded Agents: content_analyzer, data_processor, business_rules

📊 Database Statistics:
Agent Definitions: 15 (12 active)
Recent Executions (24h): 234 agents, 45 workflows
Overall Success Rate: 94.5%

Detailed Statistics

python manage.py orchestrator_status --detailed

Additional output:

📈 Detailed Statistics:
Execution Status (last 24h):
Completed: 221
Running: 8
Failed: 5
Average Execution Time: 4.32s
Total Tokens Used: 1,245,890
Total Cost: $2.4567

Agent-Specific Stats

python manage.py orchestrator_status --agents

Additional output:

🤖 Agent Statistics:
Most Used Agents (last 24h):
content_analyzer: 89 executions
data_processor: 67 executions
business_rules: 45 executions

Agents by Category:
Content: 3
Data: 2
Business: 2

Runtime Agent Metrics:
content_analyzer: 89 runs, 96.7% success, 85.2% cache hit
data_processor: 67 runs, 94.0% success, 72.3% cache hit

Custom Time Range

# Show statistics for last 48 hours
python manage.py orchestrator_status --agents --recent 48

# Show statistics for last week
python manage.py orchestrator_status --detailed --recent 168

Agent Configuration

Model Selection

Django-CFG supports multiple LLM providers:

# OpenAI models
--model openai:gpt-4o
--model openai:gpt-4o-mini
--model openai:gpt-4-turbo

# OpenRouter models
--model openrouter:anthropic/claude-3.5-sonnet
--model openrouter:google/gemini-pro-1.5
--model openrouter:meta-llama/llama-3.1-70b

Dependencies Configuration

Available dependency types:

# Django dependencies (default)
--deps-type DjangoDeps

# Content processing dependencies
--deps-type ContentDeps

# Data processing dependencies
--deps-type DataProcessingDeps

# Business logic dependencies
--deps-type BusinessLogicDeps

# Custom dependencies
--deps-type CustomDeps

Output Types

Configure agent output format:

# Process result (default)
--output-type ProcessResult

# Analysis result
--output-type AnalysisResult

# Validation result
--output-type ValidationResult

# Custom result type
--output-type CustomResult

Best Practices

1. Use Descriptive Names

# ✅ GOOD - Clear, descriptive name
python manage.py create_agent "email_spam_detector" \
"Detect spam in emails using content analysis"

# ❌ BAD - Vague name
python manage.py create_agent "agent1" "Do stuff"

2. Provide Detailed Instructions

# ✅ GOOD - Detailed, specific instructions
python manage.py create_agent "support_ticket_classifier" \
"Classify support tickets into categories: technical, billing, feature_request, bug. \
Analyze ticket content, urgency, and context. \
Return category, confidence score, and suggested priority." \
--category support

# ❌ BAD - Vague instructions
python manage.py create_agent "classifier" "Classify things"

3. Set Appropriate Timeouts

# Quick tasks
--timeout 60 # 1 minute for simple classification

# Normal tasks
--timeout 300 # 5 minutes (default) for most tasks

# Complex tasks
--timeout 900 # 15 minutes for document processing
--timeout 1800 # 30 minutes for batch operations

4. Use Tags for Organization

python manage.py create_agent "email_processor" \
"Process and route incoming emails" \
--tags email automation processing routing \
--category communication

5. Make Public Only When Appropriate

# Public agent - accessible to all users
python manage.py create_agent "content_formatter" \
"Format content according to style guidelines" \
--public

# Private agent - specific to creator/admins
python manage.py create_agent "internal_audit" \
"Audit internal processes and compliance" \
--category compliance

6. Enable Caching for Repetitive Tasks

# Enable caching (default)
python manage.py create_agent "faq_responder" \
"Respond to frequently asked questions"

# Disable caching for dynamic content
python manage.py create_agent "market_analyzer" \
"Analyze current market conditions" \
--no-cache

Workflow Examples

Setup Content Processing Pipeline

# 1. Load content templates
python manage.py create_agent --load content_analyzer content_validator

# 2. Create custom content generator
python manage.py create_agent "blog_writer" \
"Generate engaging blog posts on given topics" \
--category content --public --model openai:gpt-4o

# 3. Check orchestrator status
python manage.py orchestrator_status --agents

Setup Customer Support Automation

# 1. Create ticket classifier
python manage.py create_agent "ticket_classifier" \
"Classify support tickets by urgency and category" \
--category support --public

# 2. Create response generator
python manage.py create_agent "response_generator" \
"Generate helpful responses to customer inquiries" \
--category support --public --model openai:gpt-4o

# 3. Create escalation detector
python manage.py create_agent "escalation_detector" \
"Detect when tickets need human escalation" \
--category support --timeout 120

Setup Data Processing Pipeline

# 1. Load data templates
python manage.py create_agent --load data_processor data_validator

# 2. Create data enrichment agent
python manage.py create_agent "data_enricher" \
"Enrich data with additional information" \
--category data --tags enrichment automation

# 3. Monitor processing
python manage.py orchestrator_status --detailed --recent 1

Monitoring & Debugging

Check Agent Execution

# Real-time status during execution
watch -n 5 'python manage.py orchestrator_status'

Monitor Token Usage

# Check token consumption
python manage.py orchestrator_status --detailed

Review Agent Performance

# Analyze performance metrics
python manage.py orchestrator_status --agents --recent 168


AI Agents automate complex workflows! 🤖