Skip to main content

Django-RQ Documentation

Complete documentation for Django-RQ integration in django-cfg.

📚 Documentation Files

1. overview.md - Introduction & Quick Start

  • What: High-level overview of Django-RQ integration
  • Content: Features, comparison with alternatives, quick start guide
  • Diagrams: 2 Mermaid diagrams (architecture overview, job lifecycle)
  • Size: 17 KB

Key Topics:

  • Why Django-RQ vs Celery/Dramatiq
  • Key features and benefits
  • Quick configuration examples
  • Task examples
  • Performance benchmarks

2. architecture.md - System Design & Components

  • What: Deep dive into Django-RQ architecture
  • Content: Component interaction, data flow, deployment patterns
  • Diagrams: 15+ Mermaid diagrams
  • Size: 18 KB

Key Topics:

  • System overview and components
  • Configuration layer (Pydantic models)
  • Task execution flow
  • Queue management strategy
  • Scheduler architecture
  • Monitoring architecture
  • Integration patterns
  • Performance optimization
  • Deployment architectures

3. configuration.md - Setup Guide

  • What: Complete configuration reference
  • Content: All config options with examples and best practices
  • Size: 22 KB

Key Topics:

  • Minimal vs complete configuration
  • Configuration models (DjangoRQConfig, RQQueueConfig, RQScheduleConfig)
  • Queue configuration patterns
  • Schedule configuration (cron, interval, one-time)
  • Redis configuration (standard, SSL, Sentinel)
  • Environment-based configuration
  • Validation rules
  • Best practices

4. examples.md - Real-World Examples

  • What: Comprehensive code examples
  • Content: Real tasks from solution/projects/django project
  • Size: 29 KB

Key Topics:

  • Simple tasks
  • Real-world examples from crypto app:
    • update_coin_prices - Update cryptocurrency prices
    • import_coins - Import coin data
    • generate_report - Generate market reports
  • Email tasks (welcome, bulk newsletter)
  • Long-running tasks with progress tracking
  • Task retry patterns
  • Job dependencies
  • Scheduled tasks
  • Error handling
  • Testing
  • Performance tips

5. monitoring.md - Monitoring & Observability

  • What: Complete monitoring guide
  • Content: All monitoring methods and tools
  • Size: 9.3 KB

Key Topics:

  • Django Admin interface
  • REST API endpoints
  • Prometheus metrics
  • CLI commands (rqstats, rqworker, rqscheduler)
  • Web dashboard
  • Best practices
  • Alerting setup
  • Troubleshooting

6. deployment.md - Production Deployment Guide

  • What: Complete deployment guide for all platforms
  • Content: Docker, Kubernetes, Cloud platforms, local development
  • Size: 25 KB

Key Topics:

  • Docker Compose deployment (production & local)
  • Kubernetes manifests (Deployments, Services, ConfigMaps)
  • Cloud platforms (AWS ECS, GCP Cloud Run, Heroku)
  • Environment configuration
  • Scaling strategies (horizontal & vertical)
  • Health checks and monitoring
  • Security best practices
  • Troubleshooting guide
  • Migration checklist (ReArq → RQ, Celery → RQ)

🎯 Documentation Statistics

  • Total Files: 6 markdown files + 1 category config
  • Total Size: ~120 KB
  • Mermaid Diagrams: 18+
  • Code Examples: 60+
  • Real-world Tasks: 3 (from solution project)
  • Deployment Platforms: 4 (Docker, K8s, AWS, GCP)

📊 Mermaid Diagrams

overview.md (2 diagrams)

  1. Architecture Overview - Shows Django, Redis, Workers, Monitoring
  2. Component Interaction - Sequence diagram of job lifecycle

architecture.md (15 diagrams)

  1. System Overview - Complete component graph
  2. Configuration Models - Class diagram (Pydantic models)
  3. Django-RQ Integration - Sequence diagram
  4. Task Execution Flow - Detailed sequence diagram
  5. Queue Management - Multi-queue strategy
  6. Scheduler Architecture - Cron/interval/one-time scheduling
  7. Schedule Registration - Sequence diagram
  8. REST API Layer - API architecture
  9. Data Flow - API data flow sequence
  10. Pydantic Models - Class diagram (RQJobModel, RQQueueModel, etc.)
  11. Enqueue Patterns - Integration points
  12. Result Handling - Multiple result access methods
  13. Error Handling - State diagram with retry logic
  14. Worker Pool - Multi-process architecture
  15. Redis Data Structures - Key structure graph
  16. Connection Pooling - Sequence diagram
  17. Single-Server Deployment - Deployment diagram
  18. Multi-Server Deployment - HA deployment diagram

🔗 References

Solution Project Examples

Documentation is based on real code from:

  • solution/projects/django/api/config.py - Configuration example
  • solution/projects/django/apps/crypto/tasks.py - Task examples
  • solution/projects/django/apps/crypto/management/commands/ - CLI examples

Implementation

Documentation describes implementation in:

  • projects/django-cfg-dev/src/django_cfg/apps/rq/ - RQ integration
  • projects/django-cfg-dev/src/django_cfg/models/django/django_rq.py - Config models

📝 Documentation Style

  • Markdown: GitHub-flavored markdown with Docusaurus extensions
  • Code Examples: Python with syntax highlighting
  • Diagrams: Mermaid.js for all visualizations
  • Structure: Hierarchical with clear sections
  • Cross-references: Links between related sections
  • Best Practices: Dedicated sections in each document
  • Production-ready: Focus on real-world usage

✅ Coverage

Documentation covers:

  • ✅ Quick start and setup
  • ✅ Complete configuration reference
  • ✅ System architecture and design
  • ✅ Real-world code examples
  • ✅ Monitoring and observability
  • ✅ Production deployment (Docker, K8s, Cloud)
  • ✅ Best practices and patterns
  • ✅ Troubleshooting guide
  • ✅ Performance optimization
  • ✅ Scaling strategies
  • ✅ Security checklist
  • ✅ Migration guides (ReArq, Celery)
  • ✅ Testing strategies

📦 Integration with Docusaurus

Files are ready for Docusaurus:

  • _category_.json - Sidebar configuration
  • Frontmatter with metadata (title, description, tags)
  • Proper sidebar positioning
  • Cross-document links
  • Mermaid diagram support